Search results
Results from the WOW.Com Content Network
In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.
In thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. [1] When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. [1]
The hydrogenation of one mole of acetylene yields ethane as a product and is described by the equation C 2 H 2 (g) + 2 H 2 (g) → C 2 H 6 (g). Standard enthalpy of neutralization is the change in enthalpy that occurs when an acid and base undergo a neutralization reaction to form one mole of water.
Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.
As discussed earlier, can have a positive or negative sign. If Δ H {\displaystyle \Delta H} has a positive sign, the system uses heat and is endothermic ; if Δ H {\displaystyle \Delta H} is negative, then heat is produced and the system is exothermic .
positive, the process is non-spontaneous as written, but it may proceed spontaneously in the reverse direction. zero, the process is at equilibrium, with no net change taking place over time. This set of rules can be used to determine four distinct cases by examining the signs of the Δ S and Δ H .
Δ latt H corresponds to U L in the text. The downward arrow "electron affinity" shows the negative quantity –EA F, since EA F is usually defined as positive. For ionic compounds, the standard enthalpy of formation is equivalent to the sum of several terms included in the Born–Haber cycle. For example, the formation of lithium fluoride,
The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".