Search results
Results from the WOW.Com Content Network
Addition of concentrated sulfuric acid to potassium permanganate gives Mn 2 O 7. [76] Although no reaction may be apparent, the vapor over the mixture will ignite paper impregnated with alcohol. Potassium permanganate and sulfuric acid react to produce some ozone , which has a high oxidizing power and rapidly oxidizes the alcohol, causing it to ...
Dihydroxylation is the process by which an alkene is converted into a vicinal diol.Although there are many routes to accomplish this oxidation, the most common and direct processes use a high-oxidation-state transition metal (typically osmium or manganese).
A [3+2]-cycloaddition with the alkene (3) gives the cyclic intermediate 4. [ 9 ] [ 10 ] Basic hydrolysis liberates the diol ( 5 ) and the reduced osmate ( 6 ). Methanesulfonamide (CH 3 SO 2 NH 2 ) has been identified as a catalyst to accelerate this step of the catalytic cycle and if frequently used as an additive to allow non-terminal alkene ...
Warm concentrated potassium permanganate (KMnO 4) will react with an alkene to form a glycol. Following this dihydroxylation , the KMnO 4 can then cleave the glycol to give aldehydes or ketones. The aldehydes will react further with (KMnO 4 ), being oxidized to become carboxylic acids .
This reaction illustrates the relatively rare role of hydroxide as a reducing agent. The concentration of K 2 MnO 4 in such solutions can be checked by measuring their absorbance at 610 nm. The one-electron reduction of permanganate to manganate can also be effected using iodide as the reducing agent: 2 KMnO 4 + 2 KI → 2 K 2 MnO 4 + I 2
The simplest alkene, ethylene (C 2 H 4) (or "ethene" in the IUPAC nomenclature) is the organic compound produced on the largest scale industrially. [5] Aromatic compounds are often drawn as cyclic alkenes, however their structure and properties are sufficiently distinct that they are not classified as alkenes or olefins. [3]
Dehydrohalogenation to give an alkene. In chemistry, dehydrohalogenation is an elimination reaction which removes a hydrogen halide from a substrate. The reaction is usually associated with the synthesis of alkenes, but it has wider applications.
In organic chemistry, syn-and anti-addition are different ways in which substituent molecules can be added to an alkene (R 2 C=CR 2) or alkyne (RC≡CR).The concepts of syn and anti addition are used to characterize the different reactions of organic chemistry by reflecting the stereochemistry of the products in a reaction.