Ad
related to: shapiro radar time delay control
Search results
Results from the WOW.Com Content Network
The Shapiro time delay effect, or gravitational time delay effect, is one of the four classic Solar System tests of general relativity. Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present.
Irwin I. Shapiro proposed another test, beyond the classical tests, which could be performed within the Solar System. It is sometimes called the fourth "classical" test of general relativity. He predicted a relativistic time delay (Shapiro delay) in the round-trip travel time for radar signals reflecting off other planets. [49]
In particular, the direction of motion with respect to the sense of rotation of the central body is relevant because co-and counter-propagating waves carry a "gravitomagnetic" time delay Δt GM which could be, in principle, be measured [2] [3] if S is known.
These predictions concern the passage of time, the geometry of space, the motion of bodies in free fall, and the propagation of light, and include gravitational time dilation, gravitational lensing, the gravitational redshift of light, the Shapiro time delay and singularities/black holes.
Staggered PRF is a transmission process where the time between interrogations from radar changes slightly, in a patterned and readily-discernible repeating manner. The change of repetition frequency allows the radar, on a pulse-to-pulse basis, to differentiate between returns from its own transmissions and returns from other radar systems with ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Sensitivity time control (STC), also known as swept-gain control, is a system used to attenuate the very strong signals returned from nearby ground clutter targets in the first few range gates of a radar receiver. Without this attenuation, the receiver would routinely saturate due to the strong signals. This is used in air traffic control ...
If the radar was locked on to the aircraft, it will hopefully remain locked to this second pulse as the aircraft moves away from the original location. Eventually, the aircraft will fall outside the range gate and disappear, while the radar continues tracking the false signal. Thus, the false signal is said to "pull the range gate off the target".
Ad
related to: shapiro radar time delay control