Ad
related to: reflection coefficient and vswr change of angle
Search results
Results from the WOW.Com Content Network
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
In radio frequency (RF) practice this is often measured in a dimensionless ratio known as voltage standing wave ratio (VSWR) with a VSWR bridge. The ratio of energy bounced back depends on the impedance mismatch. Mathematically, it is defined using the reflection coefficient. [2]
This is correct for reflection coefficients with a magnitude no greater than unity, which is usually the case. A reflection coefficient with a magnitude greater than unity, such as in a tunnel diode amplifier, will result in a negative value for this expression. VSWR, however, from its definition, is always positive.
We call the fraction of the incident power that is reflected from the interface the reflectance (or reflectivity, or power reflection coefficient) R, and the fraction that is refracted into the second medium is called the transmittance (or transmissivity, or power transmission coefficient) T.
A time-domain reflectometer; an instrument used to locate the position of faults on lines from the time taken for a reflected wave to return from the discontinuity.. A signal travelling along an electrical transmission line will be partly, or wholly, reflected back in the opposite direction when the travelling signal encounters a discontinuity in the characteristic impedance of the line, or if ...
Vice versa is true when reflection occurs at lower refractive index interface.) [4] Also, this is referring to near-normal incidence—for p-polarized light reflecting off glass at glancing angle, beyond the Brewster angle, the phase change is 0°. The phase changes that take place upon reflection play an important part in thin film interference.
Since SWR is a measure of the load impedance relative to the characteristic impedance of the transmission line in use (which together determine the reflection coefficient as described below), a given SWR meter can interpret the impedance it sees in terms of SWR only if it has been designed for the same particular characteristic impedance as the ...
Inverting the matrix form of the Zoeppritz equations give the coefficients as a function of angle. Although the four equations can be solved for the four unknowns, they do not give an intuitive understanding for how the reflection amplitudes vary with the rock properties involved (density, velocity etc.). [3]
Ad
related to: reflection coefficient and vswr change of angle