Search results
Results from the WOW.Com Content Network
Here, the interpolant is not a polynomial but a spline: a chain of several polynomials of a lower degree. Interpolation of periodic functions by harmonic functions is accomplished by Fourier transform. This can be seen as a form of polynomial interpolation with harmonic base functions, see trigonometric interpolation and trigonometric polynomial.
Another way to see this result is to note that any interpolating cubic polynomial can be expressed as the sum of the unique interpolating quadratic polynomial plus an arbitrarily scaled cubic polynomial that vanishes at all three points in the interval, and the integral of this second term vanishes because it is odd within the interval.
In mathematics, Neville's algorithm is an algorithm used for polynomial interpolation that was derived by the mathematician Eric Harold Neville in 1934. Given n + 1 points, there is a unique polynomial of degree ≤ n which goes through the given points. Neville's algorithm evaluates this polynomial.
Furthermore, polynomial interpolation may exhibit oscillatory artifacts, especially at the end points (see Runge's phenomenon). Polynomial interpolation can estimate local maxima and minima that are outside the range of the samples, unlike linear interpolation. For example, the interpolant above has a local maximum at x ≈ 1.566, f(x) ≈ 1. ...
A better form of the interpolation polynomial for practical (or computational) purposes is the barycentric form of the Lagrange interpolation (see below) or Newton polynomials. Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function.
The Hermite interpolation problem is a problem of linear algebra that has the coefficients of the interpolation polynomial as unknown variables and a confluent Vandermonde matrix as its matrix. [3] The general methods of linear algebra, and specific methods for confluent Vandermonde matrices are often used for computing the interpolation ...
This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...
This product is a monic polynomial of degree n. It may be shown that the maximum absolute value (maximum norm) of any such polynomial is bounded from below by 2 1−n. This bound is attained by the scaled Chebyshev polynomials 2 1−n T n, which are also monic. (Recall that |T n (x)| ≤ 1 for x ∈ [−1, 1]. [5])