Search results
Results from the WOW.Com Content Network
15: It is divisible by 3 and by 5. [6] 390: it is divisible by 3 and by 5. 16: If the thousands digit is even, the number formed by the last three digits must be divisible by 16. 254,176: 176. If the thousands digit is odd, the number formed by the last three digits must be 8 times an odd number. 3408: 408 = 8 × 51.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
That is, although 360 and 2520 both have more divisors than any number twice themselves, 2520 is the lowest number divisible by both 1 to 9 and 1 to 10, whereas 360 is not the lowest number divisible by 1 to 6 (which 60 is) and is not divisible by 1 to 7 (which 420 is).
For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively. A related concept is that of a largely composite number , a positive integer that has at least as many divisors as all smaller positive integers.
In the past 500 years, there was no leap day in 1700, 1800 and 1900, but 2000 had one. In the next 500 years, if the practice is followed, there will be no leap day in 2100, 2200, 2300 and 2500 ...
Graph of number of -digit polydivisible numbers in base 10 () vs estimate of (). Let be the number of digits. The function () determines the number of polydivisible numbers that has digits in base , and the function () is the total number of polydivisible numbers in base .
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
The number 18 is a harshad number in base 10, because the sum of the digits 1 and 8 is 9, and 18 is divisible by 9.; The Hardy–Ramanujan number (1729) is a harshad number in base 10, since it is divisible by 19, the sum of its digits (1729 = 19 × 91).