Search results
Results from the WOW.Com Content Network
Proprietary, free academic use, source code Beckman Institute: NWChem: No No Yes Yes No No Yes No No High-performance computational chemistry software, includes quantum mechanics, molecular dynamics and combined QM-MM methods Free open source, Educational Community License version 2.0 NWChem: Protein Local Optimization Program: No Yes Yes Yes ...
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
Orbitals of the Radium. (End plates to [1]) 5 electrons with the same principal and auxiliary quantum numbers, orbiting in sync. ([2] page 364) The Sommerfeld extensions of the 1913 solar system Bohr model of the hydrogen atom showing the addition of elliptical orbits to explain spectral fine structure.
GROningen MOlecular Simulation (GROMOS) is the name of a force field for molecular dynamics simulation, and a related computer software package. Both are developed at the University of Groningen, and at the Computer-Aided Chemistry Group [1] at the Laboratory for Physical Chemistry [2] at the Swiss Federal Institute of Technology ().
Depiction of a hydrogen atom showing the diameter as about twice the Bohr model radius. (Image not to scale) A hydrogen atom is an atom of the chemical element hydrogen.The electrically neutral hydrogen atom contains a single positively charged proton in the nucleus, and a single negatively charged electron bound to the nucleus by the Coulomb force.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
A hydroxyl group, for example, can be both a hydrogen bond donor, and a hydrogen bond acceptor, and it would be impossible to treat this with one OH pseudo-atom. About half the atoms in a protein or nucleic acid are non-polar hydrogens, so the use of united atoms can provide a substantial savings in computer time.
One electron/cell behaves like hydrogen, two/cell like helium, etc. As of 2022, supercells with up to eight electrons could be simulated. One result of the simulation showed that the difference between metal and insulator is a continuous function of the electric field strength. [2]