enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. T-norm - Wikipedia

    en.wikipedia.org/wiki/T-norm

    As the standard negator is used in the above definition of a t-norm/t-conorm pair, this can be generalized as follows: A De Morgan triplet is a triple (T,⊥,n) such that [1] T is a t-norm; ⊥ is a t-conorm according to the axiomatic definition of t-conorms as mentioned above; n is a strong negator

  3. Uniformly convex space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_convex_space

    The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...

  4. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]

  5. Locally convex topological vector space - Wikipedia

    en.wikipedia.org/wiki/Locally_convex_topological...

    If is a topological vector space and if this convex absorbing subset is also a bounded subset of , then the absorbing disk := | | = will also be bounded, in which case will be a norm and (,) will form what is known as an auxiliary normed space. If this normed space is a Banach space then is called a Banach disk.

  6. Uniformly smooth space - Wikipedia

    en.wikipedia.org/wiki/Uniformly_smooth_space

    In mathematics, a uniformly smooth space is a normed vector space satisfying the property that for every > there exists > ...

  7. Lp space - Wikipedia

    en.wikipedia.org/wiki/Lp_space

    The Lebesgue space. The normed vector space ((,), ‖ ‖) is called space or the Lebesgue space of -th power integrable functions and it is a Banach space for every (meaning that it is a complete metric space, a result that is sometimes called the Riesz–Fischer theorem).

  8. Banach space - Wikipedia

    en.wikipedia.org/wiki/Banach_space

    In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space.Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and is complete in the sense that a Cauchy sequence of vectors always converges to a well-defined limit that is within the space.

  9. F-space - Wikipedia

    en.wikipedia.org/wiki/F-space

    Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metrizable topological vector space. The metric may or may not necessarily be part of the structure on an F-space; many authors only require that such a space be metrizable in a manner that satisfies the above properties.