enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geostrophic current - Wikipedia

    en.wikipedia.org/wiki/Geostrophic_current

    A geostrophic current is an oceanic current in which the pressure gradient force is balanced by the Coriolis effect. The direction of geostrophic flow is parallel to the isobars , with the high pressure to the right of the flow in the Northern Hemisphere , and the high pressure to the left in the Southern Hemisphere .

  3. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    In the tower example, a ball launched upward would move toward the west. if the velocity is in the direction of rotation, the Coriolis force is outward from the axis. For example, on Earth, this situation occurs for a body at the equator moving east relative to Earth's surface. It would move upward as seen by an observer on the surface.

  4. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    In differential geometry, the Gauss map of a surface is a function that maps each point in the surface to a unit vector that is orthogonal to the surface at that point. Namely, given a surface X in Euclidean space R 3 , the Gauss map is a map N : X → S 2 (where S 2 is the unit sphere ) such that for each p in X , the function value N ( p ) is ...

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Wind generated current - Wikipedia

    en.wikipedia.org/wiki/Wind_generated_current

    A Wind generated current is a flow in a body of water that is generated by wind friction on its surface. Wind can generate surface currents on water bodies of any size. The depth and strength of the current depend on the wind strength and duration, and on friction and viscosity losses, [1] but are limited to about 400 m depth by the mechanism, and to lesser depths where the water is shallower. [2]

  7. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    This often yields a result giving a family of solutions implicitly, but in many examples does yield the general solution in explicit form. In general relativity, to obtain timelike geodesics it is often simplest to start from the spacetime metric , after dividing by d s 2 {\displaystyle ds^{2}} to obtain the form

  8. Ocean current - Wikipedia

    en.wikipedia.org/wiki/Ocean_current

    In addition, the areas of surface ocean currents move somewhat with the seasons; this is most notable in equatorial currents. Deep ocean basins generally have a non-symmetric surface current, in that the eastern equator-ward flowing branch is broad and diffuse whereas the pole-ward flowing western boundary current is relatively narrow.

  9. Surface map - Wikipedia

    en.wikipedia.org/wiki/Surface_map

    In mathematics, geology, and cartography, a surface map is a 2D perspective representation of a 3-dimensional surface. [1] Surface maps usually represent real-world entities such as landforms or the surfaces of objects. They can, however, serve as an abstraction where the third, or even all of the dimensions correspond to non-spatial data. In ...