Search results
Results from the WOW.Com Content Network
The cosmological redshift is can be interpreted as an accumulation of infinitesimal Doppler shifts along the trajectory of the light. [30] There are several websites for calculating various times and distances from redshift, as the precise calculations require numerical integrals for most values of the parameters. [31] [32] [33] [34]
The redshift z is often described as a redshift velocity, which is the recessional velocity that would produce the same redshift if it were caused by a linear Doppler effect (which, however, is not the case, as the velocities involved are too large to use a non-relativistic formula for Doppler shift). This redshift velocity can easily exceed ...
Redshift quantization, also referred to as redshift periodicity, [1] redshift discretization, [2] preferred redshifts [3] and redshift-magnitude bands, [4] [5] is the hypothesis that the redshifts of cosmologically distant objects (in particular galaxies and quasars) tend to cluster around multiples of some particular value.
Gravitational redshift can be interpreted as a consequence of the equivalence principle (that gravitational effects are locally equivalent to inertial effects and the redshift is caused by the Doppler effect) [5] or as a consequence of the mass–energy equivalence and conservation of energy ('falling' photons gain energy), [6] [7] though there ...
Distance measures are used in physical cosmology to give a natural notion of the distance between two objects or events in the universe.They are often used to tie some observable quantity (such as the luminosity of a distant quasar, the redshift of a distant galaxy, or the angular size of the acoustic peaks in the cosmic microwave background (CMB) power spectrum) to another quantity that is ...
The term Friedmann equation sometimes is used only for the first equation. [3] a is the scale factor, G, Λ, and c are universal constants (G is the Newtonian constant of gravitation, Λ is the cosmological constant with dimension length −2, and c is the speed of light in vacuum).
I.E. the adjustment to the standard relationship between absolute and apparent magnitude required to correct for the redshift effect. [4] Here, D L is the luminosity distance measured in parsecs . The exact nature of the calculation that needs to be applied in order to perform a K correction depends upon the type of filter used to make the ...
One application of Hubble's law is to estimate distances to galaxies based on measurements of their recessional velocities. However, for relatively nearby galaxies the peculiar velocity can be comparable to or larger than the recessional velocity, in which case Hubble's law does not give a good estimate of an object's distance based on its ...