Search results
Results from the WOW.Com Content Network
Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...
Faraday's law was later generalized to become the Maxwell–Faraday equation, one of the four Maxwell equations in his theory of electromagnetism. Electromagnetic induction has found many applications, including electrical components such as inductors and transformers , and devices such as electric motors and generators .
The various FBI mnemonics (for electric motors) show the direction of the force on a conductor carrying a current in a magnetic field as predicted by Fleming's left hand rule for motors [1] and Faraday's law of induction. Other mnemonics exist that use a right hand rule for predicting resulting motion from a preexisting current and field.
The two Maxwell equations, Faraday's Law and the Ampère–Maxwell Law, illustrate a very practical feature of the electromagnetic field. Faraday's Law may be stated roughly as "a changing magnetic field inside a loop creates an electric voltage around the loop". This is the principle behind the electric generator.
When a conductor such as a wire attached to a circuit moves through a magnetic field, an electric current is induced in the wire due to Faraday's law of induction. The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows.
In his experiment, Faraday closed the opening by attaching the metal lid of the pail to the thread suspending the ball, so when the ball was lowered to the center of the container the lid covered the opening. [1] [3] However this is not necessary. The experiment works very well even for containers with large uncovered openings, like Faraday's pail.
[15] [16] Maxwell's extension to the law states that a time-varying electric field can also generate a magnetic field. [12] Similarly, Faraday's law of induction states that a magnetic field can produce an electric current. For example, a magnet pushed in and out of a coil of wires can produce an electric current in the coils which is ...
From Faraday's law of induction, this field induces a counterclockwise flow of electric current (I, red), in the sheet. This is the eddy current. In contrast, at the trailing edge of the magnet (right side) the magnetic field through the sheet is decreasing, inducing a clockwise eddy current in the sheet.