enow.com Web Search

  1. Ad

    related to: viscosity versus shear rate
    • Video

      Watch Videos On How Our EMS

      Viscometer Technology Works.

    • Development Story

      Know How We Got Our Start In

      Analytical Instruments Tech.

Search results

  1. Results from the WOW.Com Content Network
  2. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    For a Newtonian fluid wall, shear stress (τ w) can be related to shear rate by = ˙ where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.

  3. Apparent viscosity - Wikipedia

    en.wikipedia.org/wiki/Apparent_viscosity

    A single viscosity measurement at a constant speed in a typical viscometer is a measurement of the instrument viscosity of a fluid (not the apparent viscosity). In the case of non-Newtonian fluids, measurement of apparent viscosity without knowledge of the shear rate is of limited value: the measurement cannot be compared to other measurements if the speed and geometry of the two instruments ...

  4. Viscosity - Wikipedia

    en.wikipedia.org/wiki/Viscosity

    For some fluids, the viscosity is constant over a wide range of shear rates (Newtonian fluids). The fluids without a constant viscosity (non-Newtonian fluids) cannot be described by a single number. Non-Newtonian fluids exhibit a variety of different correlations between shear stress and shear rate.

  5. Shear thinning - Wikipedia

    en.wikipedia.org/wiki/Shear_thinning

    At high shear rates, polymers are entirely disentangled and the viscosity value of the system plateaus at η ∞, or the infinite shear viscosity plateau. At low shear rates, the shear is too low to be impeded by entanglements and the viscosity value of the system is η 0, or the zero shear rate viscosity. The value of η ∞ represents the ...

  6. Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Newtonian_fluid

    The following equation illustrates the relation between shear rate and shear stress for a fluid with laminar flow only in the direction x: =, where: τ x y {\displaystyle \tau _{xy}} is the shear stress in the components x and y, i.e. the force component on the direction x per unit surface that is normal to the direction y (so it is parallel to ...

  7. Non-Newtonian fluid - Wikipedia

    en.wikipedia.org/wiki/Non-Newtonian_fluid

    The viscosity of a shear thickening – i.e. dilatant – fluid appears to increase when the shear rate increases. Corn starch suspended in water ("oobleck", see below) is a common example: when stirred slowly it looks milky, when stirred vigorously it feels like a very viscous liquid.

  8. Power-law fluid - Wikipedia

    en.wikipedia.org/wiki/Power-law_fluid

    A Newtonian fluid is a power-law fluid with a behaviour index of 1, where the shear stress is directly proportional to the shear rate: = These fluids have a constant viscosity, μ, across all shear rates and include many of the most common fluids, such as water, most aqueous solutions, oils, corn syrup, glycerine, air and other gases.

  9. Time-dependent viscosity - Wikipedia

    en.wikipedia.org/wiki/Time-dependent_viscosity

    Viscosity; Rheopecty: The longer the fluid is subjected to a shear force, the higher the viscosity. Time-dependent shear thickening behavior. Thixotropy: The longer a fluid is subjected to a shear force, the lower its viscosity. It is a time-dependent shear thinning behavior. Shear thickening: Similar to rheopecty, but independent of the ...

  1. Ad

    related to: viscosity versus shear rate