Search results
Results from the WOW.Com Content Network
Viral evolution is a subfield of evolutionary biology and virology that is specifically concerned with the evolution of viruses. [1] [2] Viruses have short generation times, and many—in particular RNA viruses—have relatively high mutation rates (on the order of one point mutation or more per genome per round of replication).
A virus with this "viral envelope" uses it—along with specific receptors—to enter a new host cell. Viruses vary in shape from the simple helical and icosahedral to more complex structures. Viruses range in size from 20 to 300 nanometres; it would take 33,000 to 500,000 of them, side by side, to stretch to 1 centimetre (0.4 in).
The importance of tobacco mosaic virus in the history of viruses cannot be overstated. It was the first virus to be discovered, and the first to be crystallised and its structure shown in detail. The first X-ray diffraction pictures of the crystallised virus were obtained by Bernal and Fankuchen in 1941.
A virus is a submicroscopic infectious agent that replicates only inside the living cells of an organism. [1] Viruses infect all life forms, from animals and plants to microorganisms, including bacteria and archaea. [2] [3] Viruses are found in almost every ecosystem on Earth and are the most numerous type of biological entity.
Gamma phage, an example of virus particles (visualised by electron microscopy) Virology is the scientific study of biological viruses.It is a subfield of microbiology that focuses on their detection, structure, classification and evolution, their methods of infection and exploitation of host cells for reproduction, their interaction with host organism physiology and immunity, the diseases they ...
The viral eukaryogenesis hypothesis posits that eukaryotes are composed of three ancestral elements: a viral component that became the modern nucleus; a prokaryotic cell (an archaeon according to the eocyte hypothesis) which donated the cytoplasm and cell membrane of modern cells; and another prokaryotic cell (here bacterium) that, by endocytosis, became the modern mitochondrion or chloroplast.
Viruses may even have multiple origins and different types of viruses may have evolved independently over the history of life. [51] There are different hypotheses for the origins of viruses, for instance an early viral origin from the RNA world or a later viral origin from selfish DNA. [51]
It is the first step of viral replication. Some viruses attach to the cell membrane of the host cell and inject its DNA or RNA into the host to initiate infection. Attachment to a host cell is often achieved by a virus attachment protein that extends from the protein shell (), of a virus.