enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    A general Apollonius problem can be transformed into the simpler problem of circle tangent to one circle and two parallel lines (itself a special case of the LLC special case). To accomplish this, it suffices to scale two of the three given circles until they just touch, i.e., are tangent.

  3. Special cases of Apollonius' problem - Wikipedia

    en.wikipedia.org/wiki/Special_cases_of_Apollonius...

    In general, the same inversion transforms the given line L and given circle C into two new circles, c 1 and c 2. Thus, the problem becomes that of finding a solution line tangent to the two inverted circles, which was solved above. There are four such lines, and re-inversion transforms them into the four solution circles of the Apollonius problem.

  4. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    Conversely, if three given circles are all tangent at the same point, then any circle tangent at the same point is a solution; such Apollonius problems have an infinite number of solutions. If any of the given circles are identical, there is likewise an infinity of solutions.

  5. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  6. Apollonius point - Wikipedia

    en.wikipedia.org/wiki/Apollonius_point

    Let A', B', C' be the points of contact of the circle E with the three excircles. The lines AA', BB', CC' are concurrent. The point of concurrence is the Apollonius point of ABC. The Apollonius problem is the problem of constructing a circle tangent to three given circles in a plane. In general, there are eight circles touching three given circles.

  7. Circles of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Circles_of_Apollonius

    Apollonius' problem is to construct circles that are simultaneously tangent to three specified circles. The solutions to this problem are sometimes called the circles of Apollonius. The Apollonian gasket—one of the first fractals ever described—is a set of mutually tangent circles, formed by solving Apollonius' problem iteratively.

  8. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have. In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this ...

  9. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    A tangent, a chord, and a secant to a circle. The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The ...