enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    If an independent sample of validation data is taken from the same population as the training data, it will generally turn out that the model does not fit the validation data as well as it fits the training data. The size of this difference is likely to be large especially when the size of the training data set is small, or when the number of ...

  4. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.

  5. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    The amount of overfitting can be tested using cross-validation methods, that split the sample into simulated training samples and testing samples. The model is then trained on a training sample and evaluated on the testing sample.

  6. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    Comparing curves with fixed sample size tradeoffs between model builder's risk and model user's risk can be seen easily in the risk curves. [7] If model builder's risk, model user's risk, and the upper and lower limits for the range of accuracy are all specified then the sample size needed can be calculated. [7]

  7. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    To then oversample, take a sample from the dataset, and consider its k nearest neighbors (in feature space). To create a synthetic data point, take the vector between one of those k neighbors, and the current data point. Multiply this vector by a random number x which lies between 0, and 1. Add this to the current data point to create the new ...

  8. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. [3] Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.

  9. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the ...