enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    If an independent sample of validation data is taken from the same population as the training data, it will generally turn out that the model does not fit the validation data as well as it fits the training data. The size of this difference is likely to be large especially when the size of the training data set is small, or when the number of ...

  4. Verification and validation - Wikipedia

    en.wikipedia.org/wiki/Verification_and_validation

    Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.

  5. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    More abstractly, learning curves plot the difference between learning effort and predictive performance, where "learning effort" usually means the number of training samples, and "predictive performance" means accuracy on testing samples. [3] Learning curves have many useful purposes in ML, including: [4] [5] [6] choosing model parameters ...

  6. Informal methods of validation and verification - Wikipedia

    en.wikipedia.org/wiki/Informal_methods_of...

    Inspection is a verification method that is used to compare how correctly the conceptual model matches the executable model. Teams of experts, developers, and testers will thoroughly scan the content (algorithms, programming code, documents, equations) in the original conceptual model and compare with the appropriate counterpart to verify how closely the executable model matches. [1]

  7. Regression validation - Wikipedia

    en.wikipedia.org/wiki/Regression_validation

    If, for example, the out-of-sample mean squared error, also known as the mean squared prediction error, is substantially higher than the in-sample mean square error, this is a sign of deficiency in the model. A development in medical statistics is the use of out-of-sample cross validation techniques in meta-analysis.

  8. Validity (statistics) - Wikipedia

    en.wikipedia.org/wiki/Validity_(statistics)

    The validity of a measurement tool (for example, a test in education) is the degree to which the tool measures what it claims to measure. [3] Validity is based on the strength of a collection of different types of evidence (e.g. face validity, construct validity, etc.) described in greater detail below.

  9. Statistical model validation - Wikipedia

    en.wikipedia.org/wiki/Statistical_model_validation

    Residual plots plot the difference between the actual data and the model's predictions: correlations in the residual plots may indicate a flaw in the model. Cross validation is a method of model validation that iteratively refits the model, each time leaving out just a small sample and comparing whether the samples left out are predicted by the ...