Search results
Results from the WOW.Com Content Network
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]
The Weiss magneton was experimentally derived in 1911 as a unit of magnetic moment equal to 1.53 × 10 −24 joules per tesla, which is about 20% of the Bohr magneton. In the summer of 1913, the values for the natural units of atomic angular momentum and magnetic moment were obtained by the Danish physicist Niels Bohr as a consequence of his ...
This is the basis for defining the magnetic moment units of Bohr magneton (assuming charge-to-mass ratio of the electron) and nuclear magneton (assuming charge-to-mass ratio of the proton). See electron magnetic moment and Bohr magneton for more details.
The quantity μ eff is effectively dimensionless, but is often stated as in units of Bohr magneton (μ B). [12] For substances that obey the Curie law, the effective magnetic moment is independent of temperature. For other substances μ eff is temperature dependent, but the dependence is small if the Curie-Weiss law holds and the Curie ...
where is the Bohr magneton, is the total electronic angular momentum, and is the Landé g-factor. A more accurate approach is to take into account that the operator of the magnetic moment of an electron is a sum of the contributions of the orbital angular momentum L → {\displaystyle {\vec {L}}} and the spin angular momentum S → ...
The spin magnetic moment of the electron is =, where is the spin (or intrinsic angular-momentum) vector, is the Bohr magneton, and = is the electron-spin g-factor. Here μ {\displaystyle {\boldsymbol {\mu }}} is a negative constant multiplied by the spin , so the spin magnetic moment is antiparallel to the spin.
The above classical relation does not hold, giving the wrong result by the absolute value of the electron's g-factor, which is denoted g e: = | | =, where μ B is the Bohr magneton. The gyromagnetic ratio due to electron spin is twice that due to the orbiting of an electron.
The Hamiltonian for an electron in a static homogeneous magnetic field in an atom is usually composed of three terms = + (+) + where is the vacuum permeability, is the Bohr magneton, is the g-factor, is the elementary charge, is the electron mass, is the orbital angular momentum operator, the spin and is the component of the position operator orthogonal to the magnetic field.