Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
The hypothesis to be tested is if D is within the acceptable range of accuracy. Let L = the lower limit for accuracy and U = upper limit for accuracy. Then H 0 L ≤ D ≤ U. versus H 1 D < L or D > U. is to be tested. The operating characteristic (OC) curve is the probability that the null hypothesis is accepted when it is true.
Engineers evaluate the problem (which could be classification or regression, for example) to determine the most suitable machine learning algorithm, including deep learning paradigms. [7] [8] Once an algorithm is chosen, optimizing it through hyperparameter tuning is essential to enhance efficiency and accuracy. [9]
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...
In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
In the fields of science and engineering, the accuracy of a measurement system is the degree of closeness of measurements of a quantity to that quantity's true value. [3] The precision of a measurement system, related to reproducibility and repeatability , is the degree to which repeated measurements under unchanged conditions show the same ...
The definition of M&S validation focuses on the accuracy with which the M&S represents the real-world intended use(s). Determining the degree of M&S accuracy is required because all M&S are approximations of reality, and it is usually critical to determine if the degree of approximation is acceptable for the intended use(s).