enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Autotroph - Wikipedia

    en.wikipedia.org/wiki/Autotroph

    Autotrophs possibly evolved into heterotrophs when they were at low H 2 partial pressures where the first form of heterotrophy were likely amino acid and clostridial type purine fermentations. [19] It has been suggested that photosynthesis emerged in the presence of faint near infrared light emitted by hydrothermal vents.

  3. Photoautotroph - Wikipedia

    en.wikipedia.org/wiki/Photoautotroph

    Winogradsky column showing Photoautotrophs in purple and green. Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy).

  4. Lithoautotroph - Wikipedia

    en.wikipedia.org/wiki/Lithoautotroph

    A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]

  5. Chemotroph - Wikipedia

    en.wikipedia.org/wiki/Chemotroph

    A black smoker vent in the Atlantic Ocean, providing energy and nutrients for chemotrophs. Chemoautotrophs are autotrophic organisms that can rely on chemosynthesis, i.e. deriving biological energy from chemical reactions of environmental inorganic substrates and synthesizing all necessary organic compounds from carbon dioxide.

  6. Primary nutritional groups - Wikipedia

    en.wikipedia.org/wiki/Primary_nutritional_groups

    Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).

  7. Consumer (food chain) - Wikipedia

    en.wikipedia.org/wiki/Consumer_(food_chain)

    Autotrophs are vital to all ecosystems because all organisms need organic molecules, and only autotrophs can produce them from inorganic compounds. [1] Autotrophs are classified as either photoautotrophs (which get energy from the sun, like plants) or chemoautotrophs (which get energy from chemical bonds, like certain bacteria).

  8. Phototroph - Wikipedia

    en.wikipedia.org/wiki/Phototroph

    Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds (e.g., Na 2 S 2 O 3, as in some purple sulfur bacteria, or H 2 S, as in some green sulfur bacteria) they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs.

  9. Ecosystem respiration - Wikipedia

    en.wikipedia.org/wiki/Ecosystem_respiration

    Cellular respiration is the overall relationship between autotrophs and heterotrophs.Autotrophs are organisms that produce their own food through the process of photosynthesis, whereas heterotrophs are organisms that cannot prepare their own food and depend on autotrophs for nutrition.