Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
Sometimes an infinite repeating decimal is required to reach the same precision. Thus, it is often useful to convert repeating digits into fractions. A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789.... For repeating patterns that begin ...
In 1802, H. Goodwyn published an observation on the appearance of 9s in the repeating-decimal representations of fractions whose denominators are certain prime numbers. [46] Examples include: = 0. 142857 and 142 + 857 = 999. = 0. 01369863 and 0136 + 9863 = 9999.
A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, the continued fraction is finite or infinite .
Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator.
A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...
The continued fraction representation for a real number is finite if and only if it is a rational number. In contrast, the decimal representation of a rational number may be finite, for example 137 / 1600 = 0.085625, or infinite with a repeating cycle, for example 4 / 27 = 0.148148148148...