Search results
Results from the WOW.Com Content Network
An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and micromachining.
Laser radiation safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations.
The argon fluoride laser (ArF laser) is a particular type of excimer laser, [1] which is sometimes (more correctly) called an exciplex laser. With its 193-nanometer wavelength, it is a deep ultraviolet laser, which is commonly used in the production of semiconductor integrated circuits, eye surgery, micromachining, and scientific research.
A krypton fluoride laser (KrF laser) is a particular type of excimer laser, [1] which is sometimes (more correctly) called an exciplex laser. With its 248 nanometer wavelength, it is a deep ultraviolet laser which is commonly used in the production of semiconductor integrated circuits , industrial micromachining, and scientific research.
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules that can only exist with one atom in an excited electronic state .
To give another example, of a more powerful laser—the type that might be used in an outdoor laser show: a 6-watt green (532 nm) laser with a 1.1 milliradian beam divergence is an eye hazard to about 1,600 feet (490 meters), can cause flash blindness to about 8,200 feet (1.5 mi/2.5 km), causes veiling glare to about 36,800 feet (7 mi; 11 km ...
Rangaswamy Srinivasan and James Wynne filed a patent application on the ultraviolet excimer laser, in 1986, issued in 1988. [32] In 1989, Gholam A. Peyman was granted a US patent for using an excimer laser to modify corneal curvature. [33] It was, "A method and apparatus for modifying the curvature of a live cornea via use of an excimer laser.