enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Lineplane_intersection

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

  3. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the lineline intersection between two distinct lines , which either is one point (sometimes called a vertex ) or does not exist (if the lines are parallel ).

  4. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    In three or more dimensions, even two lines almost certainly do not intersect; pairs of non-parallel lines that do not intersect are called skew lines. But if an intersection does exist it can be found, as follows. In three dimensions a line is represented by the intersection of two planes, each of which has an equation of the form

  5. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    The three possible plane-line relationships in three dimensions. (Shown in each case is only a portion of the plane, which extends infinitely far.) In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is ...

  6. Plane–plane intersection - Wikipedia

    en.wikipedia.org/wiki/Planeplane_intersection

    This is found by noticing that the line must be perpendicular to both plane normals, and so parallel to their cross product (this cross product is zero if and only if the planes are parallel, and are therefore non-intersecting or entirely coincident).

  7. Incidence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Incidence_(geometry)

    Lines that meet at the same point are said to be concurrent. The set of all lines in a plane incident with the same point is called a pencil of lines centered at that point. The computation of the intersection of two lines shows that the entire pencil of lines centered at a point is determined by any two of the lines that intersect at that point.

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    In three-dimensional space, a first degree equation in the variables x, y, and z defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes.

  9. Plücker coordinates - Wikipedia

    en.wikipedia.org/wiki/Plücker_coordinates

    Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)