Search results
Results from the WOW.Com Content Network
Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.
The calculator uses the proprietary HP Nut processor produced in a bulk CMOS process and featured continuous memory, whereby the contents of memory are preserved while the calculator is turned off. [13] Though commonplace now, this was still notable in the early 1980s, and is the origin of the "C" in the model name.
Hexadecimal floating point (now called HFP by IBM) is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture, [1] [2] [3] as well as machines which were intended to be application-compatible with System/360. [4] [5]
Computer engineers often need to write out binary quantities, but in practice writing out a binary number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 ...
Indeed, in 1964, IBM introduced hexadecimal floating-point representations in its System/360 mainframes; these same representations are still available for use in modern z/Architecture systems. In 1998, IBM implemented IEEE-compatible binary floating-point arithmetic in its mainframes; in 2005, IBM also added IEEE-compatible decimal floating ...
Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.
These examples are given in bit representation, in hexadecimal and binary, of the floating-point value. This includes the sign, (biased) exponent, and significand. 3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...