enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexadecimal - Wikipedia

    en.wikipedia.org/wiki/Hexadecimal

    Hexadecimal (also known as base-16 or simply hex) is a positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbols, hexadecimal uses sixteen distinct symbols, most often the symbols "0"–"9" to represent values 0 to 9 and "A"–"F" to represent values from ten to fifteen.

  3. HP-16C - Wikipedia

    en.wikipedia.org/wiki/HP-16C

    The calculator uses the proprietary HP Nut processor produced in a bulk CMOS process and featured continuous memory, whereby the contents of memory are preserved while the calculator is turned off. [13] Though commonplace now, this was still notable in the early 1980s, and is the origin of the "C" in the model name.

  4. IBM hexadecimal floating-point - Wikipedia

    en.wikipedia.org/wiki/IBM_hexadecimal_floating-point

    Hexadecimal floating point (now called HFP by IBM) is a format for encoding floating-point numbers first introduced on the IBM System/360 computers, and supported on subsequent machines based on that architecture, [1] [2] [3] as well as machines which were intended to be application-compatible with System/360. [4] [5]

  5. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Computer engineers often need to write out binary quantities, but in practice writing out a binary number such as 1001001101010001 is tedious and prone to errors. Therefore, binary quantities are written in a base-8, or "octal", or, much more commonly, a base-16, "hexadecimal" (hex), number format. In the decimal system, there are 10 digits, 0 ...

  6. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Indeed, in 1964, IBM introduced hexadecimal floating-point representations in its System/360 mainframes; these same representations are still available for use in modern z/Architecture systems. In 1998, IBM implemented IEEE-compatible binary floating-point arithmetic in its mainframes; in 2005, IBM also added IEEE-compatible decimal floating ...

  7. Signed number representations - Wikipedia

    en.wikipedia.org/wiki/Signed_number_representations

    Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.

  8. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    These examples are given in bit representation, in hexadecimal and binary, of the floating-point value. This includes the sign, (biased) exponent, and significand. 3f80 = 0 01111111 0000000 = 1 c000 = 1 10000000 0000000 = −2

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...