Search results
Results from the WOW.Com Content Network
Note that this "high temperature" approximation does not distinguish between fermions and bosons. The discrepancy in the partition functions of distinguishable and indistinguishable particles was known as far back as the 19th century, before the advent of quantum mechanics. It leads to a difficulty known as the Gibbs paradox.
The name boson was coined by Paul Dirac [3] [4] to commemorate the contribution of Satyendra Nath Bose, an Indian physicist. When Bose was a reader (later professor) at the University of Dhaka, Bengal (now in Bangladesh), [5] [6] he and Albert Einstein developed the theory characterising such particles, now known as Bose–Einstein statistics and Bose–Einstein condensate.
The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion. Fermionic or bosonic behavior of a composite particle (or system) is only seen at large (compared to size of the system) distances.
Therefore, all known gauge bosons are vector bosons. Gauge bosons are different from the other kinds of bosons: first, fundamental scalar bosons (the Higgs boson); second, mesons, which are composite bosons, made of quarks; third, larger composite, non-force-carrying bosons, such as certain atoms.
At low temperatures, bosons behave differently from fermions (which obey the Fermi–Dirac statistics) in a way that an unlimited number of them can "condense" into the same energy state. This apparently unusual property also gives rise to the special state of matter – the Bose–Einstein condensate .
bosons themselves had to wait for the construction of a particle accelerator powerful enough to produce them. The first such machine that became available was the Super Proton Synchrotron, where unambiguous signals of W bosons were seen in January 1983 during a series of experiments made possible by Carlo Rubbia and Simon van der Meer.
At the top level are all alpha proteins (domains consisting of alpha helices), all beta proteins (domains consisting of beta sheets), and mixed alpha helix/beta sheet proteins. While most proteins adopt a single stable fold, a few proteins can rapidly interconvert between one or more folds. These are referred to as metamorphic proteins. [5]
The primary structure of a protein refers to the sequence of amino acids in the polypeptide chain. The primary structure is held together by peptide bonds that are made during the process of protein biosynthesis.