enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Thus, the vector is parallel to , the vector is orthogonal to , and = +. The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} } where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b , and b̂ is ...

  3. Curl (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Curl_(mathematics)

    The curl of a vector field F, denoted by curl F, or , or rot F, is an operator that maps C k functions in R 3 to C k−1 functions in R 3, and in particular, it maps continuously differentiable functions R 3 → R 3 to continuous functions R 3 → R 3. It can be defined in several ways, to be mentioned below:

  4. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  5. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  6. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Also, let Q = (x 1, y 1) be any point on this line and n the vector (a, b) starting at point Q. The vector n is perpendicular to the line, and the distance d from point P to the line is equal to the length of the orthogonal projection of on n. The length of this projection is given by:

  7. Frenet–Serret formulas - Wikipedia

    en.wikipedia.org/wiki/Frenet–Serret_formulas

    The first Frenet-Serret formula holds by the definition of the normal N and the curvature κ, and the third Frenet-Serret formula holds by the definition of the torsion τ. Thus what is needed is to show the second Frenet-Serret formula. Since T, N, B are orthogonal unit vectors with B = T × N, one also has T = N × B and N = B × T.

  8. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  9. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.