Search results
Results from the WOW.Com Content Network
The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The existence and uniqueness of the tangent line ...
Let A : (a,b) → R 2 be a parametric plane curve, in coordinates A(t) = (x(t),y(t)), and B be another (unparameterized) curve. Suppose, as before, that the curve A tends to infinity. The curve B is a curvilinear asymptote of A if the shortest distance from the point A(t) to a point on B tends to zero as t → b.
The curve of intersection of the plane and the surface has zero curvature at that point. An asymptotic curve is a curve such that, at each point, the plane tangent to the surface is an osculating plane of the curve.
Illustration of tangential and normal components of a vector to a surface. In mathematics, given a vector at a point on a curve, that vector can be decomposed uniquely as a sum of two vectors, one tangent to the curve, called the tangential component of the vector, and another one perpendicular to the curve, called the normal component of the vector.
Subtangent and related concepts for a curve (black) at a given point P. The tangent and normal lines are shown in green and blue respectively. The distances shown are the ordinate (AP), tangent (TP), subtangent (TA), normal (PN), and subnormal (AN). The angle φ is the angle of inclination of the tangent line or the tangential angle.
A non-closed curve may also be called an open curve. If the domain of a topological curve is a closed and bounded interval = [,], the curve is called a path, also known as topological arc (or just arc). A curve is simple if it is the image of an interval or a circle by an injective continuous function.
The exact definition of this pushforward depends on the definition one uses for tangent vectors (for the various definitions see tangent space). If tangent vectors are defined as equivalence classes of the curves γ {\displaystyle \gamma } for which γ ( 0 ) = x , {\displaystyle \gamma (0)=x,} then the differential is given by
Tangent line at (a, f(a)) In mathematics , a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function ). They are widely used in the method of finite differences to produce first order methods for solving or approximating solutions to equations.