enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential ...

  3. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    The gravitational potential energy is the potential energy an object has because it is within a gravitational field. The magnitude of the force between a point mass, M {\displaystyle M} , and another point mass, m {\displaystyle m} , is given by Newton's law of gravitation : [ 3 ] F = G M m r 2 {\displaystyle F={\frac {GMm}{r^{2}}}}

  4. Potential energy - Wikipedia

    en.wikipedia.org/wiki/Potential_energy

    There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is ...

  5. Gauss's law for gravity - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_gravity

    Gravitational flux is a surface integral of the gravitational field over a closed surface, analogous to how magnetic flux is a surface integral of the magnetic field. Gauss's law for gravity states: The gravitational flux through any closed surface is proportional to the enclosed mass.

  6. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    This integral is computed along the trajectory of the rigid body with an ... is the gravitational potential function, also known as gravitational potential energy ...

  7. Specific potential energy - Wikipedia

    en.wikipedia.org/wiki/Specific_potential_energy

    The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential ...

  8. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    Although the two hikers have taken different routes to get up to the top of the cliff, at the top, they will have both gained the same amount of gravitational potential energy. This is because a gravitational field is conservative. Depiction of two possible paths to integrate. In green is the simplest possible path; blue shows a more convoluted ...

  9. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.