enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Capacitance - Wikipedia

    en.wikipedia.org/wiki/Capacitance

    Mutual capacitance is measured between two components, and is particularly important in the operation of the capacitor, an elementary linear electronic component designed to add capacitance to an electric circuit. The capacitance between two conductors depends only on the geometry; the opposing surface area of the conductors and the distance ...

  3. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    In short, an electric potential is the electric potential energy per unit charge. This value can be calculated in either a static (time-invariant) or a dynamic (time-varying) electric field at a specific time with the unit joules per coulomb (J⋅C −1) or volt (V). The electric potential at infinity is assumed to be zero.

  4. Capacitor - Wikipedia

    en.wikipedia.org/wiki/Capacitor

    For example, in charging such a capacitor the differential increase in voltage with charge is governed by: = where the voltage dependence of capacitance, C(V), suggests that the capacitance is a function of the electric field strength, which in a large area parallel plate device is given by ε = V/d.

  5. Coefficients of potential - Wikipedia

    en.wikipedia.org/wiki/Coefficients_of_potential

    In this example, we employ the method of coefficients of potential to determine the capacitance on a two-conductor system. For a two-conductor system, the system of linear equations is ϕ 1 = p 11 Q 1 + p 12 Q 2 ϕ 2 = p 21 Q 1 + p 22 Q 2 . {\displaystyle {\begin{matrix}\phi _{1}=p_{11}Q_{1}+p_{12}Q_{2}\\\phi _{2}=p_{21}Q_{1}+p_{22}Q_{2}\end ...

  6. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The electric potential is the same everywhere inside the conductor and is constant across the surface of the conductor. This follows from the first statement because the field is zero everywhere inside the conductor and therefore the potential is constant within the conductor too. The electric field is perpendicular to the surface of a conductor.

  7. Electric potential energy - Wikipedia

    en.wikipedia.org/wiki/Electric_potential_energy

    The total electrostatic potential energy stored in a capacitor is given by = = = where C is the capacitance, V is the electric potential difference, and Q the charge stored in the capacitor. Outline of proof

  8. Permittivity - Wikipedia

    en.wikipedia.org/wiki/Permittivity

    A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.

  9. Double-layer capacitance - Wikipedia

    en.wikipedia.org/wiki/Double-layer_capacitance

    Double-layer capacitance is the important characteristic of the electrical double layer [1] [2] which appears at the interface between a surface and a fluid (for example, between a conductive electrode and an adjacent liquid electrolyte).