Search results
Results from the WOW.Com Content Network
Atmospheric pressure decreases following the Barometric formula with altitude while the O 2 fraction remains constant to about 100 km (62 mi), so pO 2 decreases with altitude as well. It is about half of its sea-level value at 5,000 m (16,000 ft), the altitude of the Everest Base Camp , and only a third at 8,848 m (29,029 ft), the summit of ...
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth. The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa ), which is equivalent to 1,013.25 millibars , [ 1 ] 760 mm Hg , 29.9212 inches Hg , or 14.696 psi . [ 2 ]
It indicates altitude obtained when an altimeter is set to an agreed baseline pressure under certain circumstances in which the aircraft’s altimeter would be unable to give a useful altitude readout. Examples would be landing at a high altitude or near sea level under conditions of exceptionally high air pressure.
The U.S. Standard Atmosphere is a set of models that define values for atmospheric temperature, density, pressure and other properties over a wide range of altitudes. The first model, based on an existing international standard, was published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, [ 9 ] and was updated in 1962 ...
A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 kilopascals (760 mmHg). At higher altitudes water vapour from ebullism will add to the decompression bubbles of nitrogen gas and cause the body tissues to swell up, though the tissues and the skin are strong enough not to burst ...
The earth atmosphere's scale height is about 8.5 km, as can be confirmed from this diagram of air pressure p by altitude h: At an altitude of 0, 8.5, and 17 km, the pressure is about 1000, 370, and 140 hPa, respectively.
The U.S. Standard Atmosphere is a static atmospheric model of how the pressure, temperature, density, and viscosity of the Earth's atmosphere change over a wide range of altitudes or elevations. The model, based on an existing international standard, was first published in 1958 by the U.S. Committee on Extension to the Standard Atmosphere, and ...
The atmospheric pressure at the top of the stratosphere is roughly 1/1000 the pressure at sea level. It contains the ozone layer, which is the part of Earth's atmosphere that contains relatively high concentrations of that gas. The stratosphere defines a layer in which temperatures rise with increasing altitude.