Search results
Results from the WOW.Com Content Network
A master–slave D flip-flop. It responds on the falling edge of the enable input (usually a clock). An implementation of a master–slave D flip-flop that is triggered on the rising edge of the clock. A master–slave D flip-flop is created by connecting two gated D latches in series, and inverting the enable input to one of them. It is called ...
J-K master-slave flip-flop 14 SN74104: 74x105 1 J-K master-slave flip-flop, J2 and K2 inverted 14 SN74105: 74x106 2 dual J-K negative-edge-triggered flip-flop, preset and clear 16 SN74H106: 74x107 2 dual J-K flip-flop, clear 14 SN74LS107A: 74x108 2 dual J-K negative-edge-triggered flip-flop, preset, common clear and common clock 14 SN74H108 ...
I2C and I3C are also an example of master-slave technology. Modbus uses a master device to initiate connection requests to slave devices. An edge-triggered flip-flop can be created by arranging two gated latches in a master–slave configuration. It is so named because the master latch controls the slave latch's value and forces the slave latch ...
The following is a list of CMOS 4000-series digital logic integrated circuits.In 1968, the original 4000-series was introduced by RCA.Although more recent parts are considerably faster, the 4000 devices operate over a wide power supply range (3V to 18V recommended range for "B" series) and are well suited to unregulated battery powered applications and interfacing with sensitive analogue ...
The 7400 series contains hundreds of devices that provide everything from basic logic gates, flip-flops, and counters, to special purpose bus transceivers and arithmetic logic units (ALU). Specific functions are described in a list of 7400 series integrated circuits. Some TTL logic parts were made with an extended military-specification ...
At each advance, the bit on the far left (i.e. "data in") is shifted into the first flip-flop's output. The bit on the far right (i.e. "data out") is shifted out and lost. The data is stored after each flip-flop on the "Q" output, so there are four storage "slots" available in this arrangement, hence it is a 4-bit register.
A pulse transition detector is used in flip flops in order to achieve edge triggering in the circuit. It merely converts the clock signal's rising edge to a very narrow pulse. The PTD consists of a delay gate (which delays the clock signal) and the clock signal itself passed through a NAND gate and then inverted.
In a synchronous circuit, two registers, or flip-flops, are said to be "sequentially adjacent" if a logic path connects them. Given two sequentially adjacent registers R i and R j with clock arrival times at the source and destination register clock pins equal to T Ci and T Cj respectively, clock skew can be defined as: T skew i, j = T Ci − T Cj.