Search results
Results from the WOW.Com Content Network
Radius of curvature and center of curvature. In differential geometry, the radius of curvature, R, is the reciprocal of the curvature. For a curve, it equals the radius of the circular arc which best approximates the curve at that point. For surfaces, the radius of curvature is the radius of a circle that best fits a normal section or ...
Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...
In Tractatus de configurationibus qualitatum et motuum, [1] the 14th-century philosopher and mathematician Nicole Oresme introduces the concept of curvature as a measure of departure from straightness; for circles he has the curvature as being inversely proportional to the radius; and he attempts to extend this idea to other curves as a continuously varying magnitude.
This circle, which is the one among all tangent circles at the given point that approaches the curve most tightly, was named circulus osculans (Latin for "kissing circle") by Leibniz. The center and radius of the osculating circle at a given point are called center of curvature and radius of curvature of the curve at that
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
A parabola has as (two-sided) offsets rational curves of degree 6. A hyperbola or an ellipse has as (two-sided) offsets an algebraic curve of degree 8. A Bézier curve of degree n has as (two-sided) offsets algebraic curves of degree 4n − 2. In particular, a cubic Bézier curve has as (two-sided) offsets algebraic curves of degree 10.
An example is the Fermat curve u n + v n = w n, which has an affine form x n + y n = 1. A similar process of homogenization may be defined for curves in higher dimensional spaces. Except for lines, the simplest examples of algebraic curves are the conics, which are nonsingular curves of degree two and genus zero.
The spectral radius of a finite graph is defined to be the spectral radius of its adjacency matrix. This definition extends to the case of infinite graphs with bounded degrees of vertices (i.e. there exists some real number C such that the degree of every vertex of the graph is smaller than C). In this case, for the graph G define: