enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthogonalization - Wikipedia

    en.wikipedia.org/wiki/Orthogonalization

    In linear algebra, orthogonalization is the process of finding a set of orthogonal vectors that span a particular subspace.Formally, starting with a linearly independent set of vectors {v 1, ... , v k} in an inner product space (most commonly the Euclidean space R n), orthogonalization results in a set of orthogonal vectors {u 1, ... , u k} that generate the same subspace as the vectors v 1 ...

  3. Orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_functions

    Plot of the Chebyshev rational functions of order n=0,1,2,3 and 4 between x=0.01 and 100. Legendre and Chebyshev polynomials provide orthogonal families for the interval [−1, 1] while occasionally orthogonal families are required on [0, ∞). In this case it is convenient to apply the Cayley transform first, to bring the argument into [−1, 1].

  4. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    In Euclidean space, two vectors are orthogonal if and only if their dot product is zero, i.e. they make an angle of 90° (radians), or one of the vectors is zero. [4] Hence orthogonality of vectors is an extension of the concept of perpendicular vectors to spaces of any dimension.

  5. Distance from a point to a line - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Also, let Q = (x 1, y 1) be any point on this line and n the vector (a, b) starting at point Q. The vector n is perpendicular to the line, and the distance d from point P to the line is equal to the length of the orthogonal projection of on n. The length of this projection is given by:

  6. Orthogonal basis - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_basis

    The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form ⁠ ⁠.Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when ⁠ (+) () = ⁠.

  7. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.

  8. Numerical methods for linear least squares - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The matrix X is subjected to an orthogonal decomposition, e.g., the QR decomposition as follows. = , where Q is an m×m orthogonal matrix (Q T Q=I) and R is an n×n upper triangular matrix with >. The residual vector is left-multiplied by Q T.

  9. Orthogonal transformation - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_transformation

    Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.