Search results
Results from the WOW.Com Content Network
Differential equations are prominent in many scientific areas. Nonlinear ones are of particular interest for their commonality in describing real-world systems and how much more difficult they are to solve compared to linear differential equations.
where is a function : [,), and the initial condition is a given vector. First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted ...
Some ODEs can be solved explicitly in terms of known functions and integrals. When that is not possible, the equation for computing the Taylor series of the solutions may be useful. For applied problems, numerical methods for ordinary differential equations can supply an approximation of the solution.
This project work also aims at determining the correct value of density by clearing the objects touching the borders of the image. In this project three applications are taken into account and using Matlab with image processing toolbox the count and density values are calculated for each.
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.
Method of lines - the example, which shows the origin of the name of method. The method of lines (MOL, NMOL, NUMOL [1] [2] [3]) is a technique for solving partial differential equations (PDEs) in which all but one dimension is discretized.
In practical terms, the distinction between DAEs and ODEs is often that the solution of a DAE system depends on the derivatives of the input signal and not just the signal itself as in the case of ODEs; [3] this issue is commonly encountered in nonlinear systems with hysteresis, [4] such as the Schmitt trigger. [5]