Search results
Results from the WOW.Com Content Network
On Earth, the Rayleigh number for convection within Earth's mantle is estimated to be of order 10 7, which indicates vigorous convection. This value corresponds to whole mantle convection (i.e. convection extending from the Earth's surface to the border with the core). On a global scale, surface expression of this convection is the tectonic ...
Earth heat transport occurs by conduction, mantle convection, hydrothermal convection, and volcanic advection. [15] Earth's internal heat flow to the surface is thought to be 80% due to mantle convection, with the remaining heat mostly originating in the Earth's crust, [16] with about 1% due to volcanic activity, earthquakes, and mountain ...
The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm). [24] The mantle is composed of silicate rocks richer in iron and magnesium than the overlying crust. [25] Although solid, the mantle's extremely hot silicate material can flow over very long timescales. [26] Convection of the mantle propels the motion of the tectonic plates in the
The slab affects the convection and evolution of the Earth's mantle due to the insertion of the hydrous oceanic lithosphere. [3] Dense oceanic lithosphere retreats into the Earth's mantle, while lightweight continental lithospheric material produces active continental margins and volcanic arcs , generating volcanism . [ 4 ]
The catastrophe is defined as when the mean mantle temperature exceeds the mantle solidus so that the entire mantle melts. Using the geochemically preferred Urey ratio of U r = 1 / 3 {\displaystyle Ur=1/3} and the geodynamically preferred cooling exponent of beta = 1 / 3 {\displaystyle {\text{beta}}=1/3} the mantle temperature reaches the ...
Slab suction occurs when a subducting slab drives flow in the lower mantle by exerting additional force down in the direction of the mantle's convection currents. This flow then exerts shear tractions on the base of nearby plates. This driving force is important when the slabs (or portions thereof) are not strongly attached to the rest of their ...
The core–mantle boundary (CMB) of Earth lies between the planet's silicate mantle and its liquid iron–nickel outer core, at a depth of 2,891 km (1,796 mi) below Earth's surface. The boundary is observed via the discontinuity in seismic wave velocities at that depth due to the differences between the acoustic impedances of the solid mantle ...
In geophysics, the Rayleigh number is of fundamental importance: it indicates the presence and strength of convection within a fluid body such as the Earth's mantle. The mantle is a solid that behaves as a fluid over geological time scales. The Rayleigh number for the Earth's mantle due to internal heating alone, Ra H, is given by: