Search results
Results from the WOW.Com Content Network
It is at least the absolute value of the difference of the sizes of the two strings. It is at most the length of the longer string. It is zero if and only if the strings are equal. If the strings have the same size, the Hamming distance is an upper bound on the Levenshtein distance. The Hamming distance is the number of positions at which the ...
The actual difference is not usually a good way to compare the numbers, in particular because it depends on the unit of measurement. For instance, 1 m is the same as 100 cm, but the absolute difference between 2 and 1 m is 1 while the absolute difference between 200 and 100 cm is 100, giving the impression of a larger difference. [4]
The description of similarities and differences found between the two things is also called a comparison. Comparison can take many distinct forms, varying by field: To compare is to bring two or more things together (physically or in contemplation) and to examine them systematically, identifying similarities and differences among them.
In computing, the utility diff is a data comparison tool that computes and displays the differences between the contents of files. Unlike edit distance notions used for other purposes, diff is line-oriented rather than character-oriented, but it is like Levenshtein distance in that it tries to determine the smallest set of deletions and insertions to create one file from the other.
There is an alternative definition of fold change, [citation needed] although this has generally fallen out of use. Here, fold change is defined as the ratio of the difference between final value and the initial value divided by the initial value. For quantities A and B, the fold change is given as (B − A)/A, or equivalently B/A − 1. This ...
Absolute deviation in statistics is a metric that measures the overall difference between individual data points and a central value, typically the mean or median of a dataset. It is determined by taking the absolute value of the difference between each data point and the central value and then averaging these absolute differences. [4]
The most efficient method of finding differences depends on the source data, and the nature of the changes. One approach is to find the longest common subsequence between two files, then regard the non-common data as an insertion, or a deletion. In 1978, Paul Heckel published an algorithm that identifies most moved blocks of text. [2]
A visual diff or vdiff finds differences between two files by eyeball search.The term optical diff has also been reported, and is sometimes more specifically used for the act of superimposing two nearly identical printouts on one another and holding them up to a light to spot differences.