enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Momentum - Wikipedia

    en.wikipedia.org/wiki/Momentum

    Conservation of momentum is a mathematical consequence of the homogeneity (shift symmetry) of space (position in space is the canonical conjugate quantity to momentum). That is, conservation of momentum is a consequence of the fact that the laws of physics do not depend on position; this is a special case of Noether's theorem. [25] For systems ...

  3. Continuity equation - Wikipedia

    en.wikipedia.org/wiki/Continuity_equation

    The Navier–Stokes equations form a vector continuity equation describing the conservation of linear momentum. If the fluid is incompressible (volumetric strain rate is zero), the mass continuity equation simplifies to a volume continuity equation: [ 3 ] ∇ ⋅ u = 0 , {\displaystyle \nabla \cdot \mathbf {u} =0,} which means that the ...

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A form of Newton's second law, that force is the rate of change of momentum, also holds, as does the conservation of momentum. However, the definition of momentum is modified. Among the consequences of this is the fact that the more quickly a body moves, the harder it is to accelerate, and so, no matter how much force is applied, a body cannot ...

  5. Conservation law - Wikipedia

    en.wikipedia.org/wiki/Conservation_law

    A local conservation law is usually expressed mathematically as a continuity equation, a partial differential equation which gives a relation between the amount of the quantity and the "transport" of that quantity. It states that the amount of the conserved quantity at a point or within a volume can only change by the amount of the quantity ...

  6. Noether's theorem - Wikipedia

    en.wikipedia.org/wiki/Noether's_theorem

    The local conservation of non-gravitational linear momentum and energy in a free-falling reference frame is expressed by the vanishing of the covariant divergence of the stress–energy tensor. Another important conserved quantity, discovered in studies of the celestial mechanics of astronomical bodies, is the Laplace–Runge–Lenz vector.

  7. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    The momentum form is preferable since this is readily generalized to more complex systems, such as special and general relativity (see four-momentum). [13]: 112 It can also be used with the momentum conservation. However, Newton's laws are not more fundamental than momentum conservation, because Newton's laws are merely consistent with the fact ...

  8. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant.

  9. Continuum mechanics - Wikipedia

    en.wikipedia.org/wiki/Continuum_mechanics

    When a body is acted upon by external contact forces, internal contact forces are then transmitted from point to point inside the body to balance their action, according to Newton's third law of motion of conservation of linear momentum and angular momentum (for continuous bodies these laws are called the Euler's equations of motion).