Search results
Results from the WOW.Com Content Network
The statement of Newton's law used in the heat transfer literature puts into mathematics the idea that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings. For a temperature-independent heat transfer coefficient, the statement is:
Convection-cooling is sometimes loosely assumed to be described by Newton's law of cooling. [6] Newton's law states that the rate of heat loss of a body is proportional to the difference in temperatures between the body and its surroundings while under the effects of a breeze. The constant of proportionality is the heat transfer coefficient. [7]
Simplified control circuit of human thermoregulation. [8]The core temperature of a human is regulated and stabilized primarily by the hypothalamus, a region of the brain linking the endocrine system to the nervous system, [9] and more specifically by the anterior hypothalamic nucleus and the adjacent preoptic area regions of the hypothalamus.
Surface heat loss may be reduced by insulation of the body surface. Heat is produced internally by metabolic processes and may be supplied from external sources by active heating of the body surface or the breathing gas. [2] Radiation heat loss is usually trivial due to small temperature differences, conduction and convection are the major ...
In convective heat transfer, the Churchill–Bernstein equation is used to estimate the surface averaged Nusselt number for a cylinder in cross flow at various velocities. [1] The need for the equation arises from the inability to solve the Navier–Stokes equations in the turbulent flow regime, even for a Newtonian fluid .
Heat stress can decrease athletic performance and increase risk for heat illness, which is a type of exertional heat stroke and the leading cause of death of young athletes in the US, says Dr ...
Convective heat transfer, or simply, convection, is the transfer of heat from one place to another by the movement of fluids, a process that is essentially the transfer of heat via mass transfer. The bulk motion of fluid enhances heat transfer in many physical situations, such as between a solid surface and the fluid. [10]
It is used in calculating the heat transfer, typically by convection or phase transition between a fluid and a solid. The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient ...