Search results
Results from the WOW.Com Content Network
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Sequences are either homologous or not. [3] This involves that the term "percent homology" is a misnomer. [4] As with morphological and anatomical structures, sequence similarity might occur because of convergent evolution, or, as with shorter sequences, by chance, meaning
Homologous recombination, genetic recombination in which nucleotide sequences are exchanged between molecules of DNA; Homologous desensitization, a receptor decreases its response to a signalling molecule when that agonist is in high concentration; Homology modeling, a method of protein structure prediction
These structures are the future scrotum and labia majora in males and females, respectively. The genital tubercles of an eight-week-old embryo of either sex are identical. They both have a glans area, which will go on to form the clitoral glans (females) or penile glans (males), a urogenital fold and groove, and an anal tubercle.
All vertebrate forelimbs are homologous, meaning that they all evolved from the same structures. For example, the flipper of a turtle or of a dolphin, the arm of a human, the foreleg of a horse, and the wings of both bats and birds are ultimately homologous, despite the large differences between them. [1]
Structures called chiasmata are the site of the exchange. Chiasmata physically link the homologous chromosomes once crossing over occurs and throughout the process of chromosomal segregation during meiosis. [7] Both the non-crossover and crossover types of recombination function as processes for repairing DNA damage, particularly double-strand ...
HoxA and HoxD, that regulate finger and toe formation in mice, control the development of ray fins in zebrafish; these structures had until then been considered non-homologous. [6] There is a possible deep homology among animals that use acoustic communication, such as songbirds and humans, which may share functional versions of the FOXP2 gene. [7]
The name "homologous series" is also often used for any collection of compounds that have similar structures or include the same functional group, such as the general alkanes (straight and branched), the alkenes (olefins), the carbohydrates, etc. However, if the members cannot be arranged in a linear order by a single parameter, the collection ...