Search results
Results from the WOW.Com Content Network
Homologous sequences are paralogous if they were created by a duplication event within the genome. For gene duplication events, if a gene in an organism is duplicated, the two copies are paralogous. They can shape the structure of whole genomes and thus explain genome evolution to a large extent. Examples include the Homeobox genes in animals.
Two major concepts of comparative anatomy are: Homologous structures - structures (body parts/anatomy) which are similar in different species because the species have common descent and have evolved, usually divergently, from a shared ancestor. They may or may not perform the same function. An example is the forelimb structure shared by cats ...
These structures are the future scrotum and labia majora in males and females, respectively. The genital tubercles of an eight-week-old embryo of either sex are identical. They both have a glans area, which will go on to form the clitoral glans (females) or penile glans (males), a urogenital fold and groove, and an anal tubercle.
All arthropod appendages are variations of the same basic structure (homologous), and which structure is produced is controlled by "homeobox" genes. Changes to these genes have allowed scientists to produce animals (chiefly Drosophila melanogaster) with modified appendages, such as legs instead of antennae. [2]
Human angiogenin diverged from ribonuclease, for example, and while the two paralogs remain similar in tertiary structure, their functions within the cell are now quite different. [ citation needed ] It is often asserted that orthologs are more functionally similar than paralogs of similar divergence, but several papers have challenged this notion.
Homologous recombination, genetic recombination in which nucleotide sequences are exchanged between molecules of DNA; Homologous desensitization, a receptor decreases its response to a signalling molecule when that agonist is in high concentration; Homology modeling, a method of protein structure prediction
The pattern of limb bones called pentadactyl limb is an example of homologous structures (Fig. 2e). It is found in all classes of tetrapods (i.e. from amphibians to mammals). It can even be traced back to the fins of certain fossil fishes from which the first amphibians evolved such as tiktaalik.
Homologous chromosomes can repair this damage by aligning themselves with chromosomes of the same genetic sequence. [16] Once the base pairs have been matched and oriented correctly between the two strands, the homologous chromosomes perform a process that is very similar to recombination, or crossing over as seen in meiosis.