enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    A decimal data type could be implemented as either a floating-point number or as a fixed-point number. In the fixed-point case, the denominator would be set to a fixed power of ten. In the floating-point case, a variable exponent would represent the power of ten to which the mantissa of the number is multiplied.

  3. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5

  4. Decimal separator - Wikipedia

    en.wikipedia.org/wiki/Decimal_separator

    A radix point is most often used in decimal (base 10) notation, when it is more commonly called the decimal point (the prefix deci-implying base 10). In English-speaking countries , the decimal point is usually a small dot (.) placed either on the baseline, or halfway between the baseline and the top of the digits ( · ) [ 25 ] [ a ] In many ...

  5. printf - Wikipedia

    en.wikipedia.org/wiki/Printf

    This type differs slightly from fixed-point notation in that insignificant zeroes to the right of the decimal point are not included, and that the precision field specifies the total number of significant digits rather than the digits after the decimal. Also, the decimal point is not included on whole numbers. x, X: unsigned int as a ...

  6. C syntax - Wikipedia

    en.wikipedia.org/wiki/C_syntax

    Floating-point constants may be written in decimal notation, e.g. 1.23. Decimal scientific notation may be used by adding e or E followed by a decimal exponent, also known as E notation, e.g. 1.23e2 (which has the value 1.23 × 10 2 = 123.0). Either a decimal point or an exponent is required (otherwise, the number is parsed as an integer constant).

  7. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Before the widespread adoption of IEEE 754-1985, the representation and properties of floating-point data types depended on the computer manufacturer and computer model, and upon decisions made by programming-language designers. E.g., GW-BASIC's single-precision data type was the 32-bit MBF floating-point format.

  8. C data types - Wikipedia

    en.wikipedia.org/wiki/C_data_types

    Real floating-point type, usually referred to as a single-precision floating-point type. Actual properties unspecified (except minimum limits); however, on most systems, this is the IEEE 754 single-precision binary floating-point format (32 bits). This format is required by the optional Annex F "IEC 60559 floating-point arithmetic".

  9. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...