Search results
Results from the WOW.Com Content Network
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
Nichols plot of the transfer function 1/s(1+s)(1+2s) along with the modified M and N circles. To use the Hall circles, a plot of M and N circles is done over the Nyquist plot of the open-loop transfer function. The points of the intersection between these graphics give the corresponding value of the closed-loop transfer function.
In a simple situation, the Warburg element manifests itself in EIS spectra by a line with an angle of 45 degrees in the low frequency region. Figure 2 shows an example of EIS spectrum (presented in the Nyquist plot) simulated using the following parameters: R S = 20 Ω, C dl = 25 μF, R ct = 100 Ω, A W = 300 Ω•s −0.5.
Numerous tools exist for the analysis of the poles of a system. These include graphical systems like the root locus, Bode plots or the Nyquist plots. Mechanical changes can make equipment (and control systems) more stable. Sailors add ballast to improve the stability of ships.
Harry Nyquist (/ ˈ n aɪ k w ɪ s t /, Swedish: [ˈnŷːkvɪst]; February 7, 1889 – April 4, 1976) was a Swedish-American physicist and electronic engineer who made important contributions to communication theory.
The stability characteristics of the gain feedback product β A OL are often displayed and investigated on a Nyquist plot (a polar plot of the gain/phase shift as a parametric function of frequency). A simpler, but less general technique, uses Bode plots. The combination L = −β A OL appears commonly in feedback analysis and is called the ...
Johnson–Nyquist noise, thermal noise; Nyquist stability criterion, in control theory Nyquist plot, signal processing and electronic feedback; Nyquist–Shannon sampling theorem, fundamental result in the field of information theory Nyquist frequency, digital signal processing; Nyquist rate, telecommunication theory
Figure 2. Johnson–Nyquist noise has a nearly a constant 4 k B T R power spectral density per unit of frequency, but does decay to zero due to quantum effects at high frequencies (terahertz for room temperature). This plot's horizontal axis uses a log scale such that every vertical line corresponds to a power of ten of frequency in hertz.