Search results
Results from the WOW.Com Content Network
Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...
In computer science, smoothsort is a comparison-based sorting algorithm.A variant of heapsort, it was invented and published by Edsger Dijkstra in 1981. [1] Like heapsort, smoothsort is an in-place algorithm with an upper bound of O(n log n) operations (see big O notation), [2] but it is not a stable sort.
(When N is sufficiently small, the simple algorithm above is used as a base case, as naively recurring all the way down to N=1 would have excessive function-call overhead.) This is a cache-oblivious algorithm , in the sense that it can exploit the cache line without the cache-line size being an explicit parameter.
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
Programming involves activities such as analysis, developing understanding, generating algorithms, verification of requirements of algorithms including their correctness and resources consumption, and implementation (commonly referred to as coding [1] [2]) of algorithms in a target programming language. Source code is written in one or more ...
Flashsort is an efficient in-place implementation of histogram sort, itself a type of bucket sort. It assigns each of the n input elements to one of m buckets, efficiently rearranges the input to place the buckets in the correct order, then sorts each bucket. The original algorithm sorts an input array A as follows:
Swaps for "in-place" algorithms. Memory usage (and use of other computer resources). In particular, some sorting algorithms are "in-place". Strictly, an in-place sort needs only O(1) memory beyond the items being sorted; sometimes O(log n) additional memory is considered "in-place".
The following pseudocode demonstrates an algorithm that merges input lists (either linked lists or arrays) A and B into a new list C. [1] [2]: 104 The function head yields the first element of a list; "dropping" an element means removing it from its list, typically by incrementing a pointer or index.