Search results
Results from the WOW.Com Content Network
In astronomy, a co-orbital configuration is a configuration of two or more astronomical objects (such as asteroids, moons, or planets) orbiting at the same, or very similar, distance from their primary; i.e., they are in a 1:1 mean-motion resonance. (or 1:-1 if orbiting in opposite directions). [1]
The basic elements of Ptolemaic astronomy, showing a planet on an epicycle (smaller dashed circle), a deferent (larger dashed circle), the eccentric (×) and an equant (•). In both Hipparchian and Ptolemaic systems, the planets are assumed to move in a small circle called an epicycle , which in turn moves along a larger circle called a ...
Planet Taphao Thong was discovered in 1996 and was one of the first exoplanets to be discovered. [48] The planet was the first long-period extrasolar planet discovered. The other planets were discovered later. [49] Nu 2 Lupi: Lupus: 15 h 21 m 49.57 s: −48° 19′ 01.1″ 5.65: 47: G2V: 0.906: 5664: 10.36: 3: One of the oldest stars in the ...
The specific example discussed is of a satellite orbiting a planet, but the rules of thumb could also apply to other situations, such as orbits of small bodies around a star such as the Sun. Kepler's laws of planetary motion: Orbits are elliptical, with the heavier body at one focus of the ellipse. A special case of this is a circular orbit (a ...
The speed (or the magnitude of velocity) relative to the centre of mass is constant: [1]: 30 = = where: , is the gravitational constant, is the mass of both orbiting bodies (+), although in common practice, if the greater mass is significantly larger, the lesser mass is often neglected, with minimal change in the result.
The Grand tack hypothesis explains how in the Solar System giant planets migrated in unique way to form the Solar System belts and near circular orbit of planets around the Sun. [10] [11] [9] The Solar System's belts are one key parameters for a Solar System that can support complex life, as circular orbits are a parameter needed for the ...
An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...
Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =.