Search results
Results from the WOW.Com Content Network
is the total current supplied by the battery. Internal resistance varies with the age of a battery, but for most commercial batteries the internal resistance is on the order of 1 ohm. When there is a current through a cell, the measured e.m.f. is lower than when there is no current delivered by the cell. The reason for this is that part of the ...
An ideal current source would provide no energy to a short circuit and approach infinite energy and voltage as the load resistance approaches infinity (an open circuit). An ideal current source has an infinite output impedance in parallel with the source. A real-world current source has a very high, but finite output impedance.
When the power source delivers current, the measured voltage output is lower than the no-load voltage; the difference is the voltage drop (the product of current and resistance) caused by the internal resistance. The concept of internal resistance applies to all kinds of electrical sources and is useful for analyzing many types of circuits.
These circuits behave as dynamic resistors changing their present resistance to compensate current variations. For example, if the load increases its resistance, the transistor decreases its present output resistance (and vice versa) to keep up a constant total resistance in the circuit. Active current sources have many important applications ...
A curved I–V line represents a nonlinear resistance, such as a diode. In this type the resistance varies with the applied voltage or current. Negative resistance vs positive resistance: If the I–V curve has a positive slope (increasing to the right) throughout, it represents a positive resistance.
The method is as follows: from linear network analysis the output transfer function (that is output voltage against output current) is calculated for the network of resistor(s) and the generator driving them. This will be a straight line (called the load line) and can readily be superimposed on the transfer function plot of the non-linear ...
The equivalent-circuit model is used to simulate the voltage at the cell terminals when an electric current is applied to discharge or recharge it. The most common circuital representation consists of three elements in series: a variable voltage source, representing the open-circuit voltage (OCV) of the cell, a resistor representing ohmic internal resistance of the cell and a set of resistor ...
Such relationship may take the form of a graph, where numerical values of a circuit variable are plotted versus frequency or component value (the most common example would be a plot of the magnitude of a transfer function vs. frequency). Symbolic circuit analysis is concerned with obtaining those relationships in symbolic form, i.e., in the ...