Search results
Results from the WOW.Com Content Network
A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas).It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections.
The singular set of x 2 = y 2 z 2 is the pair of lines given by the y and z axes. The only reasonable varieties to blow up are the origin, one of these two axes, or the whole singular set (both axes). However the whole singular set cannot be used since it is not smooth, and choosing one of the two axes breaks the symmetry between them so is not ...
A singular quadric surface, the cone over a smooth conic curve. If q can be written (after some linear change of coordinates) as a polynomial in a proper subset of the variables, then X is the projective cone over a lower-dimensional quadric. It is reasonable to focus attention on the case where X is not a cone.
One could define the x-axis as a tangent at this point, but this definition can not be the same as the definition at other points. In fact, in this case, the x-axis is a "double tangent." For affine and projective varieties, the singularities are the points where the Jacobian matrix has a rank which is lower than at other points of the variety.
Quadric surface (The union of two quadric surfaces is a special case of a quartic surface) ... Jessop, C. M. (1916), Quartic surfaces with singular points, ...
Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.
A plane curve defined by an implicit equation (,) =,where F is a smooth function is said to be singular at a point if the Taylor series of F has order at least 2 at this point.. The reason for this is that, in differential calculus, the tangent at the point (x 0, y 0) of such a curve is defined by the equation