Search results
Results from the WOW.Com Content Network
In mathematics, reflection symmetry, line symmetry, mirror symmetry, or mirror-image symmetry is symmetry with respect to a reflection. That is, a figure which does not change upon undergoing a reflection has reflectional symmetry. In 2-dimensional space, there is a line/axis of symmetry, in 3-dimensional space, there is a plane of symmetry
C i (equivalent to S 2) – inversion symmetry; C 2 – 2-fold rotational symmetry; C s (equivalent to C 1h and C 1v) – reflection symmetry, also called bilateral symmetry. Patterns on a cylindrical band illustrating the case n = 6 for each of the 7 infinite families of point groups. The symmetry group of each pattern is the indicated group.
A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]
The role of symmetry in grouping and figure/ground organization has been confirmed in many studies. For instance, detection of reflectional symmetry is faster when this is a property of a single object. [29] Studies of human perception and psychophysics have shown that detection of symmetry is fast, efficient and robust to perturbations.
Thus reflection is a reversal of the coordinate axis perpendicular to the mirror's surface. Although a plane mirror reverses an object only in the direction normal to the mirror surface, this turns the entire three-dimensional image seen in the mirror inside-out, so there is a perception of a left-right reversal.
Symmetries of a regular pentagon. Vertices are colored by their symmetry positions. Blue mirror lines are drawn through vertices and edges. Gyration orders are given in the center. The regular pentagon has Dih 5 symmetry, order 10. Since 5 is a prime number there is one subgroup with dihedral symmetry: Dih 1, and 2 cyclic group symmetries: Z 5 ...
C nh, [n +,2], (n*) of order 2n - prismatic symmetry or ortho-n-gonal group (abstract group Z n × Dih 1); for n=1 this is denoted by C s (1*) and called reflection symmetry, also bilateral symmetry. It has reflection symmetry with respect to a plane perpendicular to the n-fold rotation axis. C nv, [n], (*nn) of order 2n - pyramidal symmetry or ...
It has point symmetry, also known as rotational symmetry of order 2. Its symmetry group has two elements, the identity and the 180° rotation. I can be oriented in 2 ways by rotation. It has two axes of reflection symmetry, both aligned with the gridlines. Its symmetry group has four elements, the identity, two reflections and the 180° rotation.