Search results
Results from the WOW.Com Content Network
In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non- quantum mechanical description of a system of particles, or of a fluid , in cases where the velocities of moving objects are comparable to the speed of light c .
The theoretical study of time travel generally follows the laws of general relativity. Quantum mechanics requires physicists to solve equations describing how probabilities behave along closed timelike curves (CTCs), which are theoretical loops in spacetime that might make it possible to travel through time. [1] [2] [3] [4]
High-precision test of general relativity by the Cassini space probe (artist's impression): radio signals sent between the Earth and the probe (green wave) are delayed by the warping of space and time (blue lines) due to the Sun's mass. That is, the Sun's mass causes the regular grid coordinate system (in blue) to distort and have curvature.
This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives:
Three different world lines representing travel at different constant four-velocities. t is time and x distance. A curve that consists of a horizontal line segment (a line at constant coordinate time), may represent a rod in spacetime and would not be a world line in the proper sense. The parameter simply traces the length of the rod.
The angle α between the x and x′ axes will be identical with that between the time axes ct and ct′. This follows from the second postulate of special relativity, which says that the speed of light is the same for all observers, regardless of their relative motion (see below). The angle α is given by [5]
An important distinction in physics is the difference between local and global structures. Measurements in physics are performed in a relatively small region of spacetime and this is one reason for studying the local structure of spacetime in general relativity, whereas determining the global spacetime structure is important, especially in ...
The predicted difference was 30.6 ns/d. Using two different operating criteria, they found differences of 33.8±6.8 ns/d and 36.5±5.8 ns/d, respectively, in agreement with general relativity. [23] Environmental factors were controlled far more precisely than in the Iijima experiment, in which many complicated corrections had to be applied.