Search results
Results from the WOW.Com Content Network
C 6 H 5 CH 3 + 3/2 O 2 + NH 3 → C 6 H 5 (CN) + 3 H 2 O. In the laboratory it can be prepared by the dehydration of benzamide or benzaldehyde oxime [2] or by the Rosenmund–von Braun reaction using cuprous cyanide or NaCN/DMSO and bromobenzene.
Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules ("substituted aromatics"). Typical simple aromatic compounds are benzene, indole, and pyridine. [1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur.
Examples of simple benzene derivatives are phenol, toluene, and aniline, abbreviated PhOH, PhMe, and PhNH 2, respectively. Linking benzene rings gives biphenyl, C 6 H 5 –C 6 H 5. Further loss of hydrogen gives "fused" aromatic hydrocarbons, such as naphthalene, anthracene, phenanthrene, and pyrene.
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
There are 2 ortho positions, 2 meta positions and 1 para position on benzene when a group is attached to it. When a group is an ortho / para director with ortho and para positions reacting with the same partial rate factor, we would expect twice as much ortho product as para product due to this statistical effect.
From this value the sum of pi-occupation for unsubstituted benzene (value close to 6 in accord to Huckel rule) is subtracted resulting in original pEDA parameter. For pi-electron donating substituents like -NH 2, OH or -F the pEDA parameter is positive, and for pi-electron withdrawing substituents like -NO 2, -BH 2 or -CN the pEDA is negative.
An alkyne trimerisation is a [2+2+2] cycloaddition reaction in which three alkyne units (C≡C) react to form a benzene ring. The reaction requires a metal catalyst. The process is of historic interest as well as being applicable to organic synthesis. [1] Being a cycloaddition reaction, it has high atom economy.
The mechanism of S N 2 reaction does not occur due to steric hindrance of the benzene ring. In order to attack the C atom, the nucleophile must approach in line with the C-LG (leaving group) bond from the back, where the benzene ring lies. It follows the general rule for which S N 2 reactions occur only at a tetrahedral carbon atom.