Search results
Results from the WOW.Com Content Network
In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.
L is the length Re is the Reynolds number and Pr is the Prandtl number. This number is useful in determining the thermally developing flow entrance length in ducts. A Graetz number of approximately 1000 or less is the point at which flow would be considered thermally fully developed. [2]
Entrance length (fluid dynamics) – Distance a flow travels after entering a pipe before fully developed Modon (fluid dynamics) – Sea eddies Shock (fluid dynamics) – term in fluid dynamics Pages displaying wikidata descriptions as a fallback
Assume that the flow is steady, two-dimensional, and fully developed (i.e., the velocity profile does not change along the streamwise direction). [45] Note that this widely-used fully-developed assumption can be inadequate in some instances, such as some compressible, microchannel flows, in which case it can be supplanted by a locally fully ...
In fully developed flow no changes occurs in flow direction, gradient of all variables except pressure are zero in flow direction The equations are solved for cells up to NI-1, outside the domain values of flow variables are determined by extrapolation from the interior by assuming zero gradients at the outlet plane
Hydrodynamic entrance length is that part of the tube in which the momentum boundary layer grows and the velocity distribution changes with length. The fixed velocity distribution in the fully developed region is called fully developed velocity profile. The steady-state continuity and conservation of momentum equations in two-dimensional are
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The flow is axisymmetric ( ∂... / ∂θ = 0). The flow is fully developed ( ∂u x / ∂x = 0). Here however, this can be proved via mass conservation, and the above assumptions. Then the angular equation in the momentum equations and the continuity equation are identically satisfied.