enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Simple continued fraction - Wikipedia

    en.wikipedia.org/wiki/Simple_continued_fraction

    The continued fraction representation for a real number is finite if and only if it is a rational number. In contrast, the decimal representation of a rational number may be finite, for example ⁠ 137 / 1600 ⁠ = 0.085625, or infinite with a repeating cycle, for example ⁠ 4 / 27 ⁠ = 0.148148148148...

  3. List of number theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_number_theory_topics

    Unit fraction; Irreducible fraction = in lowest terms; Dyadic fraction; Recurring decimal; Cyclic number; Farey sequence. Ford circle; Stern–Brocot tree; Dedekind sum;

  4. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two. For example, the simple decimal fraction 0.3 (3 ⁄ 10) might be represented as 5404319552844595 ⁄ 18014398509481984 (0.299999999999999988897769…). This inexactness causes many problems that are ...

  5. Duodecimal - Wikipedia

    en.wikipedia.org/wiki/Duodecimal

    The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base.In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.

  6. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    However, most decimal fractions like 0.1 or 0.123 are infinite repeating fractions in base 2. and hence cannot be represented that way. Similarly, any decimal fraction a/10 m, such as 1/100 or 37/1000, can be exactly represented in fixed point with a power-of-ten scaling factor 1/10 n with any n ≥ m.

  7. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    This is also a repeating binary fraction 0.0 0011... . It may come as a surprise that terminating decimal fractions can have repeating expansions in binary. It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating point arithmetic. In fact, the only binary ...

  8. Extended precision - Wikipedia

    en.wikipedia.org/wiki/Extended_precision

    Thus, a value such as 10.15, is represented in binary as equivalent to 10.1499996185 etc. in decimal for REAL*4 but 10.15000000000000035527 etc. in REAL*8: inter-conversion will involve approximation, except for those few decimal fractions that represent an exact binary value, such as 0.625 .